Solution System Of Linear Equations In Sympy
Can you please tell me, I need to symbolically solve a system of linear equations using sympy in python. I have programmed the automatic creation of a system of linear equations, t
Solution 1:
this is my full code :
from sympy import exp,symbols
from sympy import Float,linsolve
defchis_znam_construct(T,i_eq,n):
En1 = symbols('Eb:' + str(n+1))
En0 = symbols('Ea:' + str(n+1))
En2 = symbols('Ec:' + str(n+1))
mui = symbols('mui:' + str(n+1))
k = symbols('k')
chis=0
znam=0
i_levels=0
eq=[]
varS=[]
dictvanfleck=dict({})
dictvanfleck['eq']=[]
dictvanfleck['vars']=[]
defgetvars(f,varS):
i_var=0while i_var<=(len(f)-1):
varS.append(f[i_var])
i_var+=1return varS
variable=getvars(En0,varS)
variable=getvars(En1,varS)
variable=getvars(En2,varS)
for i_levels inrange(n):
chis+=((En1[i_levels]**2)/(k*T)-
(En2[i_levels]+En2[i_levels]))*exp((En0[i_levels]**2)/(k*T))
znam+=mui[i_eq]*exp((En0[i_levels]**2)/(k*T))
i_levels+=1print('')
print('')
eq.append(chis-znam)
dictvanfleck['vars']=variable
dictvanfleck['eq']=eq
return dictvanfleck
defeq_construct(T,n):
i_eq=0
eq=[]
for i_eq inrange(n):
eq.append(chis_znam_construct(T[i_eq],i_eq,n))
i_eq+=1return eq
print('')
print('')
defsolve_eq(T,n):
equations=eq_construct(T,n)
eqA=equations[1]
var=eqA['vars']
i=0
equat=[]
while i<=(n-1):
eqA=equations[i]
eqq=eqA['eq']
equat.append(eqq[0])
i+=1
list_eq=str(equat)
list_var=str(var)
print('')
print('list_eq',list_eq)
print('')
print('list_var',list_var)
a = linsolve(list_eq,list_var)
return a
n = 4
T = symbols('T:' + str(n+1))
equations=solve_eq(T,n)
Solution 2:
you will laugh, but an error was found: firstly, I made a tuple from list, some of the errors were gone; but the most interesting thing is that when I explicitly set equations and variables, simpi cannot solve the equations :
n = 4
T = sp.symbols('T:' + str(n+1))
Ea0, Ea1, Ea2, Ea3, Ea4, Eb0, Eb1, Eb2, Eb3, Eb4, Ec0, Ec1, Ec2, Ec3, Ec4, T0, T1, T2,
T3, T4, mui0, mui1, mui2, mui3, mui4 = sp.symbols('Ea0, Ea1, Ea2, Ea3, Ea4, Eb0, Eb1,
Eb2, Eb3, Eb4, Ec0, Ec1, Ec2, Ec3, Ec4, T0, T1, T2, T3, T4, mui0, mui1, mui2, mui3,
mui4')
eq_one=sp.Eq(-mui0*exp(Ea0**2/(T0*k)) - mui0*exp(Ea1**2/(T0*k)) -
mui0*exp(Ea2**2/(T0*k)) -
mui0*exp(Ea3**2/(T0*k)) + (Eb0**2/(T0*k) - 2*Ec0)*exp(Ea0**2/(T0*k)) +
(Eb1**2/(T0*k) - 2*Ec1)*exp(Ea1**2/(T0*k)) + (Eb2**2/(T0*k) -
2*Ec2)*exp(Ea2**2/(T0*k)) +
(Eb3**2/(T0*k) - 2*Ec3)*exp(Ea3**2/(T0*k)))
eq_two=sp.Eq(-mui1*exp(Ea0**2/(T1*k)) - mui1*exp(Ea1**2/(T1*k)) -
mui1*exp(Ea2**2/(T1*k)) - mui1*exp(Ea3**2/(T1*k)) +
(Eb0**2/(T1*k) - 2*Ec0)*exp(Ea0**2/(T1*k)) + (Eb1**2/(T1*k) -
2*Ec1)*exp(Ea1**2/(T1*k)) + (Eb2**2/(T1*k) - 2*Ec2)*exp(Ea2**2/(T1*k)) +
(Eb3**2/(T1*k) - 2*Ec3)*exp(Ea3**2/(T1*k)))
eq_three=sp.Eq(-mui2*exp(Ea0**2/(T2*k)) - mui2*exp(Ea1**2/(T2*k)) -
mui2*exp(Ea2**2/(T2*k)) -
mui2*exp(Ea3**2/(T2*k)) + (Eb0**2/(T2*k) - 2*Ec0)*exp(Ea0**2/(T2*k)) +
(Eb1**2/(T2*k) - 2*Ec1)*exp(Ea1**2/(T2*k)) + (Eb2**2/(T2*k) -
2*Ec2)*exp(Ea2**2/(T2*k)) +
(Eb3**2/(T2*k) - 2*Ec3)*exp(Ea3**2/(T2*k)))
eq_four=sp.Eq(-mui3*exp(Ea0**2/(T3*k)) - mui3*exp(Ea1**2/(T3*k)) -
mui3*exp(Ea2**2/(T3*k)) - mui3*exp(Ea3**2/(T3*k)) + (Eb0**2/(T3*k) -
2*Ec0)*exp(Ea0**2/(T3*k)) +
(Eb1**2/(T3*k) - 2*Ec1)*exp(Ea1**2/(T3*k)) + (Eb2**2/(T3*k) -
2*Ec2)*exp(Ea2**2/(T3*k)) +
(Eb3**2/(T3*k) - 2*Ec3)*exp(Ea3**2/(T3*k)))
ans = sp.solve((eq_one, eq_two,eq_three,eq_four), (Ea0, Ea1, Ea2, Ea3))
print('ответ :', ans)
raise NotImplementedError('could not solve %s' % eq2)
NotImplementedError: could not solve ....
Post a Comment for "Solution System Of Linear Equations In Sympy"