Calculate Curl Of A Vector Field In Python And Plot It With Matplotlib
Solution 1:
You can use sympy.curl()
to calculate the curl of a vector field.
Example:
Suppose F(x,y,z) = yzi - xyj + zk, then:
y
would beR[1]
,x
isR[0]
andz
isR[2]
- the unit vectors i, j, k of the 3 axes, would be respectively
R.x
,R.y
,R.z
.
The code to calculate the vector field curl is:
from sympy.physics.vector import ReferenceFrame
from sympy.physics.vector import curl
R = ReferenceFrame('R')
F = R[1]**2 * R[2] * R.x - R[0]*R[1] * R.y + R[2]**2 * R.z
G = curl(F, R)
In that case G would be equal to R_y**2*R.y + (-2*R_y*R_z - R_y)*R.z
or, in other words,
G = 0i + yj + (-2yz-y)k.
To plot it you need to convert the above result into 3 separate functions; u,v,w.
(example below adapted from this matplotlib example):
from mpl_toolkits.mplot3dimport axes3d
import matplotlib.pyplotas plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
x, y, z = np.meshgrid(np.arange(-0.8, 1, 0.2),
np.arange(-0.8, 1, 0.2),
np.arange(-0.8, 1, 0.8))
u = 0
v = y**2
w = -2*y*z - y
ax.quiver(x, y, z, u, v, w, length=0.1)
plt.show()
And the final result is this:
Solution 2:
To calculate the curl of a vector function you can also use numdifftools for automatic numerical differentiation without a detour through symbolic differentiation. Numdifftools doesn't provide a curl()
function, but it does compute the Jacobian matrix of a vector valued function of one or more variables, and this provides the derivatives of all components of a vector field with respect to all of the variables; this is all that's necessary for the calculation of the curl.
importimport scipy as sp
import numdifftools as nd
defh(x):
return sp.array([3*x[0]**2,4*x[1]*x[2]**3, 2*x[0]])
defcurl(f,x):
jac = nd.Jacobian(f)(x)
return sp.array([jac[2,1]-jac[1,2],jac[0,2]-jac[2,0],jac[1,0]-jac[0,1]])
x = sp.array([1,2,3)]
curl(h,x)
This returns the value of the curl at x
: array([-216., -2., 0.])
Plotting is as suggested above.
Solution 3:
Here is a Python code that is based on an Octave / Matlab implementation,
import numpy as np
def curl(x,y,z,u,v,w):
dx = x[0,:,0]
dy = y[:,0,0]
dz = z[0,0,:]
dummy, dFx_dy, dFx_dz = np.gradient (u, dx, dy, dz, axis=[1,0,2])
dFy_dx, dummy, dFy_dz = np.gradient (v, dx, dy, dz, axis=[1,0,2])
dFz_dx, dFz_dy, dummy = np.gradient (w, dx, dy, dz, axis=[1,0,2])
rot_x = dFz_dy - dFy_dz
rot_y = dFx_dz - dFz_dx
rot_z = dFy_dx - dFx_dy
l = np.sqrt(np.power(u,2.0) + np.power(v,2.0) + np.power(w,2.0));
m1 = np.multiply(rot_x,u)
m2 = np.multiply(rot_y,v)
m3 = np.multiply(rot_z,w)
tmp1 = (m1 + m2 + m3)
tmp2 = np.multiply(l,2.0)
av = np.divide(tmp1, tmp2)
return rot_x, rot_y, rot_z, av
Post a Comment for "Calculate Curl Of A Vector Field In Python And Plot It With Matplotlib"