Converting A Python Script Into A Function To Iterate Over Each Row
How can i convert the below python script into a fucntion so that i can call it over each row of a dataframe in which i want to keep few variables dynamic like screen_name, domain
Solution 1:
Here you go buddy :-
for index, row in dff.iterrows():
twt=row['twittername']
domain = row['domain']
print(twt)
print(domain)
extractor = twitter_setup()
# We create a tweet list as follows:
tweets = extractor.user_timeline(screen_name=twt, count=200)
data = pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['Tweets'])
# We add relevant data:
data['ID'] = np.array([tweet.id for tweet in tweets])
data['Date'] = np.array([tweet.created_at for tweet in tweets])
data['text'] = np.array([tweet.text for tweet in tweets])
#data['Date'] = pd.to_datetime(data['Date'], unit='ms').dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
created_time = datetime.datetime.utcnow() - datetime.timedelta(minutes=160)
data = data[(data['Date'] > created_time) & (data['Date'] < datetime.datetime.utcnow())]
my_list = ['Maintenance', 'Scheduled', 'downtime', 'Issue', 'Voice', 'Happy','hound',
'Problem', 'Outage', 'Service', 'Interruption', 'ready','voice-comms', 'Downtime','Patch']
ndata = data[data['Tweets'].str.contains( "|".join(my_list), regex=True)].reset_index(drop=True)
print(ndata)
if len(ndata['Tweets'])> 0:
slack.chat.post_message('#ops-twitter-alerts', domain +': '+ ndata['Tweets'] + '<!channel|>')
else:
print('hi')
Post a Comment for "Converting A Python Script Into A Function To Iterate Over Each Row"