Skip to content Skip to sidebar Skip to footer

Adding New Column To Pandas Df Based On Condition

I have the following dataset: ID Asset Boolean 1 'A' True 1 'B' False 1 'B' False 2 'A' True 3 'A' True 3 'A' True 3 'B'

Solution 1:

You can GroupBy and transform with all:

df['Check'] = df.groupby('ID').Boolean.transform('all')

print(df)

    ID Asset  Boolean  Check
0    1     A     True  False
1    1     B    False  False
2    1     B    False  False
3    2     A     True   True
4    3     A     True  False
5    3     A     True  False
6    3     B    False  False
7    3     B    False  False
8    4     A     True   True
9    4     A     True   True
10   5     A     True  False
11   5     B    False  False

Post a Comment for "Adding New Column To Pandas Df Based On Condition"