Groupby Certain Number Of Rows Pandas
I have a dataframe with let's say 2 columns: dates and doubles 2017-05-01 2.5 2017-05-02 3.5 ... ... 2017-05-17 0.2 2017-05-18 2.5 Now I would like to do a g
Solution 1:
I guess you are looking for resample. consider this dataframe
rng = pd.date_range('2017-05-01', periods=18, freq='D')
num = np.random.randint(5,size = 18)
df = pd.DataFrame({'date': rng, 'val': num})
df.resample('6D', on = 'date').sum().reset_index()
will return
dateval02017-05-01 1412017-05-07 1122017-05-13 16
Solution 2:
This is alternative solution using groupby
range of length of the dataframe.
Two columns using agg
df.groupby(np.arange(len(df))//6).agg(lambda x: {'date': x.date.iloc[0],
'value': x.value.sum()})
Multiple columns you can use first
(or last
) for date and sum
for other columns.
group = df.groupby(np.arange(len(df))//6)
pd.concat((group['date'].first(),
group[[c for c in df.columns if c != 'date']].sum()), axis=1)
Post a Comment for "Groupby Certain Number Of Rows Pandas"