Tensorflow Initialization Gives All Ones
tensorflow 1.12.0 In the code snipped below, it seems that wrapped_rv_val and seq_rv_val should be equivalent, but they are not. Instead, seq_rv_val is correctly initialized to the
Solution 1:
In fact, seq_rv_val
and wrapped_rv_val
both will be correctly initialized to the randomly generated init_val array
when you do the following.
# changewrapped_rv = tf.nn.softmax(tf.get_variable('wrapped_rv', initializer=init_val))
# towrapped_rv = tf.nn.softmax(tf.get_variable('wrapped_rv', initializer=init_val), axis=2)
Next I'll explain why wrapped_rv
is initialized to 1. Let's look at the formula of softmax
.
The number of denominator summation items will be 16 when you set axis=2
. But the number of denominator summation items will be 1 when you set axis=-1
(default). So the molecule is the same as the denominator and the result is 1 when you set it to axis=-1
.
You can run the following example to understand the problem.
import tensorflow as tf
y = tf.constant([[1],[0],[1]],dtype=tf.float32)
y1 = tf.constant([[1],[2],[3]],dtype=tf.float32)
y2 = tf.constant([[1],[3],[7]],dtype=tf.float32)
softmax_var1 = tf.nn.softmax(logits=y1)
softmax_var2 = tf.nn.softmax(logits=y2)
with tf.Session() as sess:
print(sess.run(softmax_var1))
print(sess.run(softmax_var2))
[[1.]
[1.]
[1.]][[1.]
[1.]
[1.]]
Post a Comment for "Tensorflow Initialization Gives All Ones"