How To Compute A New Column Based On The Values Of Other Columns In Pandas - Python
Let's say my data frame contains these data: >>> df = pd.DataFrame({'a':['l1','l2','l1','l2','l1','l2'], 'b':['1','2','2','1','2','2']}) >>>
Solution 1:
df = pd.DataFrame({'a': numpy.random.choice(['l1', 'l2'], 1000000),
'b': numpy.random.choice(['1', '2'], 1000000)})
A fast solution assuming only two distinct values:
%timeit df['c'] = ((df.a == 'l1') == (df.b == '1')).astype(int)
10 loops, best of 3: 178 ms per loop
@Viktor Kerkes:
%timeit df['c'] = (df.a.str[-1] == df.b).astype(int)
1 loops, best of 3: 412 ms per loop
@user1470788:
%timeit df['c'] = (((df['a'] == 'l1')&(df['b']=='1'))|((df['a'] == 'l2')&(df['b']=='2'))).astype(int)
1 loops, best of 3: 363 ms per loop
@herrfz
%timeit df['c'] = (df.a.apply(lambda x: x[1:])==df.b).astype(int)
1 loops, best of 3: 387 ms per loop
Solution 2:
You can also use the string methods.
df['c'] = (df.a.str[-1] == df.b).astype(int)
Solution 3:
df['c'] = (df.a.apply(lambda x: x[1:])==df.b).astype(int)
Solution 4:
You can just use logical operators. I'm not sure why you're using strings of 1 and 2 rather than ints, but here's a solution. The astype at the end converts it from boolean to 0's and 1's.
df['c'] = (((df['a'] == 'l1')&(df['b']=='1'))|((df['a'] == 'l2')&(df['b']=='2'))).astype(int)
Post a Comment for "How To Compute A New Column Based On The Values Of Other Columns In Pandas - Python"