Efficiently Delete Each Row Of An Array If It Occurs In Another Array In Pure Numpy
Solution 1:
Here's one leveraging the fact that they are positive numbers using matrix-multiplication
for dimensionality-reduction -
def setdiff_nd_positivenums(a,b):
s = np.maximum(a.max(0)+1,b.max(0)+1)
return a[~np.isin(a.dot(s),b.dot(s))]
Sample run -
In [82]: a
Out[82]:
array([[0, 1],
[2, 3],
[1, 2],
[4, 2]])
In [83]: b
Out[83]:
array([[2, 3],
[4, 2]])
In [85]: setdiff_nd_positivenums(a,b)
Out[85]:
array([[0, 1],
[1, 2]])
Also, it seems the second-array b
is a subset of a
. So, we can leverage that scenario to boost the performance even further using np.searchsorted
, like so -
def setdiff_nd_positivenums_searchsorted(a,b):
s = np.maximum(a.max(0)+1,b.max(0)+1)
a1D,b1D = a.dot(s),b.dot(s)
b1Ds = np.sort(b1D)
return a[b1Ds[np.searchsorted(b1Ds,a1D)] != a1D]
Timings -
In [146]: np.random.seed(0)
...: a = np.random.randint(0,9,(1000000,2))
...: b = a[np.random.choice(len(a), 10000, replace=0)]
In [147]: %timeit setdiff_nd_positivenums(a,b)
...: %timeit setdiff_nd_positivenums_searchsorted(a,b)
10 loops, best of 3: 101 ms per loop
10 loops, best of 3: 70.9 ms per loop
For generic numbers, here's another using views
-
# https://stackoverflow.com/a/45313353/ @Divakar
def view1D(a, b): # a, b are arrays
a = np.ascontiguousarray(a)
b = np.ascontiguousarray(b)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
def setdiff_nd(a,b):
# a,b are the nD input arrays
A,B = view1D(a,b)
return a[~np.isin(A,B)]
Sample run -
In [94]: a
Out[94]:
array([[ 0, 1],
[-2, -3],
[ 1, 2],
[-4, -2]])
In [95]: b
Out[95]:
array([[-2, -3],
[ 4, 2]])
In [96]: setdiff_nd(a,b)
Out[96]:
array([[ 0, 1],
[ 1, 2],
[-4, -2]])
Timings -
In [158]: np.random.seed(0)
...: a = np.random.randint(0,9,(1000000,2))
...: b = a[np.random.choice(len(a), 10000, replace=0)]
In [159]: %timeit setdiff_nd(a,b)
1 loop, best of 3: 352 ms per loop
Solution 2:
The numpy-indexed package (disclaimer: I am its author) was designed to perform operations of this type efficiently on nd-arrays.
import numpy_indexed as npi
# if the output should consist of unique values and there is no need to preserve ordering
result = npi.difference(first_array, second_array)
# otherwise:
result = first_array[~npi.in_(first_array, second_array)]
Solution 3:
Here is a function that works with 2D arrays of integers with any shape, and accepting both positive and negative numbers:
import numpy as np
# Gets a boolean array of rows of a that are in bdefisin_rows(a, b):
a = np.asarray(a)
b = np.asarray(b)
# Subtract minimum value per columnmin = np.minimum(a.min(0), b.min(0))
a = a - min
b = b - min# Get maximum value per columnmax = np.maximum(a.max(0), b.max(0))
# Compute multiplicative base for each column
base = np.roll(max, 1)
base[0] = 1
base = np.cumprod(max)
# Make flattened version of arrays
a_flat = (a * base).sum(1)
b_flat = (b * base).sum(1)
# Check elements of a in breturn np.isin(a_flat, b_flat)
# Test
a = np.array([[0, 1],
[2, 3],
[1, 2],
[4, 2]])
b = np.array([[2, 3],
[4, 2]])
a_in_b_mask = isin_rows(a, b)
a_not_in_b = a[~a_in_b_mask]
print(a_not_in_b)
# [[0 1]# [1 2]]
EDIT: One possible optimization raises from considering the number of possible rows in b
. If b
has more rows than the possible number of combinations, then you may find its unique elements first so np.isin
is faster:
import numpy as np
defisin_rows_opt(a, b):
a = np.asarray(a)
b = np.asarray(b)
min = np.minimum(a.min(0), b.min(0))
a = a - min
b = b - minmax = np.maximum(a.max(0), b.max(0))
base = np.roll(max, 1)
base[0] = 1
base = np.cumprod(max)
a_flat = (a * base).sum(1)
b_flat = (b * base).sum(1)
# Count number of possible different rows for b
num_possible_b = np.prod(b.max(0) - b.min(0) + 1)
iflen(b_flat) > num_possible_b: # May tune this condition
b_flat = np.unique(b_flat)
return np.isin(a_flat, b_flat)
The condition len(b_flat) > num_possible_b
should probably be tuned better so you only find for unique elements if it is really going to be worth it (maybe len(b_flat) > 2 * num_possible_b
or len(b_flat) > num_possible_b + CONSTANT
). It seems to give some improvement for big arrays with fewer values:
import numpy as np
# Test setup from @Divakar
np.random.seed(0)
a = np.random.randint(0, 9, (1000000, 2))
b = a[np.random.choice(len(a), 10000, replace=0)]
print(np.all(isin_rows(a, b) == isin_rows_opt(a, b)))
# True
%timeit isin_rows(a, b)
# 100 ms ± 425 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit isin_rows_opt(a, b)
# 81.2 ms ± 324 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Post a Comment for "Efficiently Delete Each Row Of An Array If It Occurs In Another Array In Pure Numpy"