Finding Conditional Mutual Information From 3 Discrete Variable
Solution 1:
Based on the definitions of conditional entropy, calculating in bits (i.e. base 2) I obtain H(X|Z)=0.784159, H(Y|Z)=0.325011, H(X,Y|Z) = 0.950826. Based on the definition of conditional mutual information you provide above, I obtain I(X;Y|Z)=H(X|Z)+H(Y|Z)-H(X,Y|Z)= 0.158344. Noting that pyitlib uses base 2 by default, drv.information_mutual_conditional(X,Y,Z) appears to be computing the correct result.
Note that your use of drv.entropy_conditional(X,Y,Z) in your first example to compute conditional entropy is incorrect, you can however use drv.entropy_conditional(XY,Z), where XY is a 1D array representing the joint observations about X and Y, for example XY = [2*xy[0] + xy[1] for xy in zip(X,Y)].
Solution 2:
I think that the library function entropy_conditional(x,y,z) has some errors. I also test my samples, the same problem happens. however, the function entropy_conditional with two variables is ok. So I code my entropy_conditional(x,y,z) as entropy(x,y,z), the results is correct. the code may be not beautiful.
def gen_dict(x):
dict_z = {}
for key in x:
dict_z[key] = dict_z.get(key, 0) + 1
return dict_z
def entropy(x,y,z):
x = np.array([x,y,z]).T
x = x[x[:,-1].argsort()] # sorted by the last column
w = x[:,-3]
y = x[:,-2]
z = x[:,-1]
# dict_w = gen_dict(w)
# dict_y = gen_dict(y)
dict_z = gen_dict(z)
list_z = [dict_z[i] for i in set(z)]
p_z = np.array(list_z)/sum(list_z)
pos = 0
ent = 0
for i in range(len(list_z)):
w = x[pos:pos+list_z[i],-3]
y = x[pos:pos+list_z[i],-2]
z = x[pos:pos+list_z[i],-1]
pos += list_z[i]
list_wy = np.zeros((len(set(w)),len(set(y))), dtype = float , order ="C")
list_w = list(set(w))
list_y = list(set(y))
for j in range(len(w)):
pos_w = list_w.index(w[j])
pos_y = list_y.index(y[j])
list_wy[pos_w,pos_y] += 1
#print(pos_w)
#print(pos_y)
list_p = list_wy.flatten()
list_p = np.array([k for k in list_p if k>0]/sum(list_p))
ent_t = 0
for j in list_p:
ent_t += -j * math.log2(j)
#print(ent_t)
ent += p_z[i]* ent_t
return ent
X=[0,1,1,0,1,0,1,0,0,1,0,0]
Y=[0,1,1,0,0,0,1,0,0,1,1,0]
Z=[1,0,0,1,1,0,0,1,1,0,0,1]
a=drv.entropy_conditional(X,Z)
##print(a)
b=drv.entropy_conditional(Y,Z)
c = entropy(X, Y, Z)
p=a+b-c
print(p)
0.15834454415751043
Post a Comment for "Finding Conditional Mutual Information From 3 Discrete Variable"