A Complex Transformation Of A Data Set In Pandas
I have the following data frame: dictionary = {'Year': [1985, 1985, 1986, 1986, 1987, 1987], 'Wteam' :[1, 2, 3, 4, 5, 6], 'lteam': [ 9, 10, 11, 12, 13, 14] } pdf = pd.DataFrame(di
Solution 1:
You can do the following :
final = pd.DataFrame()
final['team values'] = pdf['Year'].astype('str') + '_' + pdf['Wteam'].astype('str') + '_' + pdf['lteam'].astype('str')
final['predicted_value'] = 1
Solution 2:
One way to do without creating a new dataframe is:
In [15]: pdf['team values'] = pdf.apply(lambda row: str(row['Year'])+'_'+ str(row['Wteam'])+'_'+str(row['lteam']), axis=1)
In [16]: pdf['predicted_value'] = 1
In [17]: pdf.drop(['Wteam','Year','lteam'],axis=1,inplace=True)
In [18]: print pdf.head()
team values predicted_value
01985_1_9 111985_2_10 121986_3_11 131986_4_12 141987_5_13 1
Post a Comment for "A Complex Transformation Of A Data Set In Pandas"